LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Erythrocyte-Membrane-Enveloped Biomineralized Metal-Organic Framework Nanoparticles Enable Intravenous Glucose-Responsive Insulin Delivery.

Photo from wikipedia

A "closed-loop" insulin delivery system that can mimic the dynamic and glucose-responsive insulin secretion as islet β-cells is desirable for the therapy of type 1 and advanced type 2 diabetes… Click to show full abstract

A "closed-loop" insulin delivery system that can mimic the dynamic and glucose-responsive insulin secretion as islet β-cells is desirable for the therapy of type 1 and advanced type 2 diabetes mellitus (T1DM and T2DM). Herein, we introduced a kind of "core-shell"-structured glucose-responsive nanoplatform to achieve intravenous "smart" insulin delivery. A finely controlled one-pot biomimetic mineralization method was utilized to coencapsulate insulin, glucose oxidase (GOx), and catalase (CAT) into the ZIF-8 nanoparticles (NPs) to construct the "inner core", where an efficient enzyme cascade system (GOx/CAT group) served as an optimized glucose-responsive module that could rapidly catalyze glucose to yield gluconic acid to lower the local pH and effectively consume the harmful byproduct hydrogen peroxide (H2O2), inducing the collapse of pH-sensitive ZIF-8 NPs to release insulin. The erythrocyte membrane, a sort of natural biological derived lipid bilayer membrane which has intrinsic biocompatibility, was enveloped onto the surface of the "inner core" as the "outer shell" to protect them from elimination by the immune system, thus making the NPs intravenously injectable and could stably maintain a long-term existence in blood circulation. The in vitro and in vivo results indicate that our well-designed nanoplatform possesses an excellent glucose-responsive property and can maintain the blood glucose levels of the streptozocin (STZ)-induced type 1 diabetic mice at the normoglycemic state for up to 24 h after being intravenously administrated, confirming an intravenous insulin delivery strategy to overcome the deficits of conventional daily multiple subcutaneous insulin administration and offering a potential candidate for long-term T1DM treatment.

Keywords: insulin; responsive insulin; glucose responsive; insulin delivery; membrane

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.