LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Universal Strategy for the Preparation of Dual Superlyophobic Surfaces in Oil-Water Systems.

Photo from wikipedia

There are some methods to prepare superwetting surfaces with underwater superoleophobicity (UWSOB) or underoil superhydrophobicity (UOSHB), but it is still thorny to put forward a universal strategy for constructing dual… Click to show full abstract

There are some methods to prepare superwetting surfaces with underwater superoleophobicity (UWSOB) or underoil superhydrophobicity (UOSHB), but it is still thorny to put forward a universal strategy for constructing dual superlyophobic surfaces in oil-water systems due to a thermodynamic contradiction. Herein, a universal strategy was proposed to prepare the dual superlyophobic surfaces in oil-water systems only via delicately controlling surface chemistry, that is, adjusting the ratios of superhydrophilic and superhydrophobic counterparts in the spray solution. Three types of materials, attapulgite (APT), TiO2, and loess, were chosen to prepare a diverse series of mixed coatings (mass gradient of superhydrophobic counterparts from 0 to 100 wt %). With the proportion of each superhydrophobic counterpart increasing, the underwater oil contact angle (θo/w*) of each mixed coating slightly decreased but still was more than 150°, that is, UWSOB. In contrast, the underoil water contact angle (θw/o*) was significantly improved, realizing the transformation from UOHL (or UOHB) to UOSHB. More importantly, the respective mass ratios of superhydrophobic counterparts in the resulting mixed coatings of APT, TiO2, and loess were finally determined to be 0.3, 0.4, and 0.2, respectively. Taking APT as a model, a train of mixed APT coatings with different superhydrophobic components were systematically characterized and analyzed. Finally, the prepared superlyophobic separation mesh in oil-water systems was applied to the separation of various surfactant-stabilized oil-water emulsions. We envision that this universal strategy we proposed will show a significant application potential in addressing scientific and technological challenges in the field of interfacial chemistry such as oil-water separation, microfluidics, microdroplet manipulation, antifogging/icing, cell engineering, drag reduction, and so forth.

Keywords: universal strategy; oil water; water; water systems; oil

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.