LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal Conductivity of Aluminum Scandium Nitride for 5G Mobile Applications and Beyond.

Photo from wikipedia

Radio frequency (RF) microelectromechanical systems (MEMS) based on Al1-xScxN are replacing AlN-based devices because of their higher achievable bandwidths, suitable for the fifth-generation (5G) mobile network. However, overheating of Al1-xScxN… Click to show full abstract

Radio frequency (RF) microelectromechanical systems (MEMS) based on Al1-xScxN are replacing AlN-based devices because of their higher achievable bandwidths, suitable for the fifth-generation (5G) mobile network. However, overheating of Al1-xScxN film bulk acoustic resonators (FBARs) used in RF MEMS filters limits power handling and thus the phone's ability to operate in an increasingly congested RF environment while maintaining its maximum data transmission rate. In this work, the ramifications of tailoring of the piezoelectric response and microstructure of Al1-xScxN films on the thermal transport have been studied. The thermal conductivity of Al1-xScxN films (3-8 W m-1 K-1) grown by reactive sputter deposition was found to be orders of magnitude lower than that for c-axis-textured AlN films due to alloying effects. The film thickness dependence of the thermal conductivity suggests that higher frequency FBAR structures may suffer from limited power handling due to exacerbated overheating concerns. The reduction of the abnormally oriented grain (AOG) density was found to have a modest effect on the measured thermal conductivity. However, the use of low AOG density films resulted in lower insertion loss and thus less power dissipated within the resonator, which will lead to an overall enhancement of the device thermal performance.

Keywords: conductivity aluminum; aluminum scandium; thermal conductivity; conductivity; scandium nitride; al1 xscxn

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.