LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Endorsing Organic Porous Polymers in Regioselective and Unusual Oxidative C═C Bond Cleavage of Styrenes into Aldehydes and Anaerobic Benzyl Alcohol Oxidation via Hydride Elimination.

Photo by josephtpearson from unsplash

Oxidative cleavage of styrene C═C double bond is accomplished by employing a nitrogen-rich triazine-based microporous organic polymer as an organocatalyst. We report this regioselective reaction as first of its kind… Click to show full abstract

Oxidative cleavage of styrene C═C double bond is accomplished by employing a nitrogen-rich triazine-based microporous organic polymer as an organocatalyst. We report this regioselective reaction as first of its kind with no metal add-ons to afford benzaldehydes up to 92% selectivity via an unusual Wacker-type C═C bond cleavage. Such a reaction pathway is generally observed in the presence of a metal catalyst. This polymer further shows high catalytic efficiency in an anaerobic oxidation reaction of benzyl alcohols into benzaldehydes. The reaction is mediated by a base via the in situ generation of hydride ions. This study is supported by experiments and computational analyses for a free-radical transformation reaction of oxidative C═C bond cleavage of styrenes and a hydride elimination mechanism for the anaerobic oxidation reaction. Essentially, the study unveils protruding applications of metal-free nitrogen-rich porous polymers in organic transformation reactions.

Keywords: oxidation; cleavage; oxidative bond; bond; bond cleavage; reaction

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.