LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NOx Storage Performance at Low Temperature over Platinum Group Metal-Free SrTiO3-Based Material.

Photo from wikipedia

Pt-based catalysts are commonly employed as NOx-trapping catalysts for automobiles, while perovskite oxides have received attention as Pt-free NOx-trapping catalysts. However, the NOx storage performance of perovskite catalysts is significantly… Click to show full abstract

Pt-based catalysts are commonly employed as NOx-trapping catalysts for automobiles, while perovskite oxides have received attention as Pt-free NOx-trapping catalysts. However, the NOx storage performance of perovskite catalysts is significantly inferior at low temperatures and with coexisting gases such as H2O, CO2, and SO2. This study demonstrates that NOx storage reactions proceed over redox site (Mn, Fe, and Co)-doped SrTiO3 perovskites. Among the examined catalysts, Mn-doped SrTiO3 exhibited the highest NOx storage capacity (NSC) and showed a high NSC even at a low temperature of 323 K. Moreover, the high NOx storage performance of Mn-doped SrTiO3 was retained in the presence of poisoning gases (H2O, CO2, and SO2). NO oxidation experiments revealed that the NSC of Co-doped SrTiO3 was dependent on the NO oxidation activity from NO to NO2 via lattice oxygen, which resulted in an inferior NSC at low temperatures. On the other hand, Mn-doped SrTiO3 successfully adsorbed NO molecules onto its surface at 323 K without the NO oxidation process using lattice oxygens. This unique adsorption behavior of Mn-doped SrTiO3 was concluded to be responsible for the high NSC in the presence of poisoning gases.

Keywords: storage; storage performance; nox storage; doped srtio3

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.