The rational design of continuous covalent organic framework (COF)-based membranes is challenging for desalination applications, mainly due to the larger intrinsic pore size of COFs and defects in the crystalline… Click to show full abstract
The rational design of continuous covalent organic framework (COF)-based membranes is challenging for desalination applications, mainly due to the larger intrinsic pore size of COFs and defects in the crystalline film, which lead to a negligible NaCl rejection ratio. In this work, we first demonstrated a COF-based desalination membrane with in situ cross-linking of a COF-TpPa layer by trimesoyl chloride (TMC) to stitch the defects between COF crystals and cross-link the COF cavity with high-cross-linking degree networks to enhance NaCl rejection. With the addition of TMC monomers, both small spherical nodules and some elongated "leaf-like" features were observed on the membrane surface due to the appearance of nanovoids during cross-linking. The resulting COF-based desalination membrane had a water permeability of approximately 0.81 L m-2 h-1 bar-1 and offered substantial enhancement of the NaCl rejection ratio from being negligible to 93.3% at 5 bar. Mechanistic analysis indicated that the amidation reaction of the secondary amine in keto COF with TMC induced the formation of a highly porous network structure both in the cavity and on the exterior of COF, thereby successfully forming a continuous and nanovoid-containing selective layer for desalination. In addition, the membrane exhibited excellent desalting performance for real industrial wastewater with both low and high salinity. This study proposed that the introduction of a cross-linker to react with the terminal amine group and secondary amine in the backbone of the keto form of COF or its derivatives could provide a facile and scalable approach to fabricate a COF-based membrane with superior NaCl rejection. This opens a new fabrication route for COF-based desalination membranes, as well as extended applications in water desalination.
               
Click one of the above tabs to view related content.