LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures.

Photo from wikipedia

Recently, Ni and Ni-Cu nanoparticle-based inks have gained considerable research interest because of their high corrosion resistance as conductors in electronic devices. However, reported inks based on Cu-Ni nanoparticles need… Click to show full abstract

Recently, Ni and Ni-Cu nanoparticle-based inks have gained considerable research interest because of their high corrosion resistance as conductors in electronic devices. However, reported inks based on Cu-Ni nanoparticles need to be sintered at high temperatures above 300 °C to obtain electrodes with high conductivity on the order of 10-5 Ω·cm. This study proposes a new conductive Cu-Ni-based hybrid ink that could be sintered at only 150-180 °C for producing Cu-Ni electrodes with low electrical resistance, high oxidation resistance, and flexibility. The hybrid ink contains Cu flakes and a complex of nickel formate and 1-amino-2-propanol (NiF-AmIP complex). At 150-180 °C, the Cu flakes catalyze the self-reduction of the NiF-AmIP complex, and Cu-Ni electrodes with high conductivity (on the order of 10-5 Ω·cm) are formed on flexible polymer substrates at temperatures exceeding 150 °C. Analysis indicates that metallic Ni was decorated on the Cu flakes (especially on the edge) to improve the electrode's conductivity, oxidation resistance, and flexibility by forming bridging interconnections between the Cu flakes. The Cu-Ni electrodes demonstrated high stability against oxidation up to approximately 400 °C in air, as well as at 80 °C and 80% RH after 7 days. In addition to the excellent oxidation stability, the Cu-Ni electrode showed high durability under mechanical bending stress. Such sintered Cu-Ni electrodes obtained from hybrid inks have great potentials in printed/flexible devices due to their oxidation resistance and cost-effectiveness.

Keywords: oxidation; highly conductive; conductive flexible; resistance; oxidation resistance; hybrid inks

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.