LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Smart Electromagnetic Thermites: GO/rGO Nanoscale Thermite Composites with Thermally Switchable Microwave Ignitability.

Photo by vladizlo from unsplash

This effort demonstrates the development of a novel, graphene oxide nanoscale thermite composite with thermally tunable microwave ignitability. A model thermite system containing nanoscale aluminum and nanoscale iron(II) oxide in… Click to show full abstract

This effort demonstrates the development of a novel, graphene oxide nanoscale thermite composite with thermally tunable microwave ignitability. A model thermite system containing nanoscale aluminum and nanoscale iron(II) oxide in a stoichiometric ratio (30/70 wt %) was combined with sheets of graphene oxide (GO) or reduced graphene oxide (rGO) using an immiscible two-fluid sonication and tape casting process. The samples were microwave irradiated within a single-mode resonant microwave cavity to determine the microwave ignition delay. Neat thermites were found to ignite after 4.34 s of microwave illumination, whereas 30 wt % rGO thermite composite ignition delay was an order of magnitude shorter (0.43 s). For most samples (4 of 6 trials), it was found that application of a 30 wt % GO coating inhibits microwave ignition of the thermite. Thermal treatment of the GO thermite composite led to switching of thermites from unignitable to ignitable with microwave field application as short as 0.24 s due to GO reduction. Optimum heat treatment time and GO content are explored with SEM, DSC/TGA-MS, Raman, and XPS deconvolution. This effort demonstrates the use of GO and rGO addition to achieve thermally switchable microwave ignitability to electromagnetically shield or enhance nanoscale energetic ignition by microwave energy.

Keywords: thermally switchable; ignitability; switchable microwave; nanoscale thermite; microwave ignitability

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.