LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential-Dependent Mechanistic Study of Ethanol Electro-oxidation on Palladium.

Photo from wikipedia

We herein used the density functional theory (DFT) method and the implicit continuum solvation model to study the potential-dependent mechanism of ethanol oxidation reaction (EOR) on palladium (Pd). Energy evolutions… Click to show full abstract

We herein used the density functional theory (DFT) method and the implicit continuum solvation model to study the potential-dependent mechanism of ethanol oxidation reaction (EOR) on palladium (Pd). Energy evolutions of the EOR on low-index Pd surfaces, including (111), (110), and (100), were obtained as a function of the electrode potential. Moreover, the onset potentials for key intermediates and products were calculated. In addition, the potential range for adsorbed ethanol as the most stable adsorption state for proceeding the EOR was determined to be between 0.15 and 0.78 V via the calculated Pourbaix diagrams when considering hydrogen underpotential deposition and Pd(II) oxide formation as competing reactions. Specifically, the behavior of Pd(111) as the dominating facet decided the overall activity of the EOR with onset potentials to acidic acid/acetate at 0.40 V, to carbon dioxide at 0.71 V, and to oxide formation at 0.78 V. Pd(110) was predicted to exhibit the optimal activity toward the EOR with the lowest onset potentials to both the first dehydrogenation process and carbon dioxide at 0.08 and 0.60 V, respectively. A computational potential-dependent mechanism of the EOR was proposed, which agrees well with the experimental curve of linear sweeping voltammetry on the commercial Pd/C electrocatalyst. Our study suggests that targeted control of products can be tuned with proper overpotential and thus provides a foundation for the future development of EOR electrocatalysts.

Keywords: oxidation; study; eor; palladium; potential dependent

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.