LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Size-Resolved Single Entity Collision Biosensing for Dual Quantification of MicroRNAs in a Single Run.

Photo from wikipedia

Limited to the accuracy of size resolution, single entity collision biosensing (SECBS) for multiplex immunoassays remains challenging, because it is difficult to get the true value of nanoparticle (NP) sizes… Click to show full abstract

Limited to the accuracy of size resolution, single entity collision biosensing (SECBS) for multiplex immunoassays remains challenging, because it is difficult to get the true value of nanoparticle (NP) sizes based on the current intensity due to the complex movement of NPs on the electrode surface. Considering that the size-dependent movement of NPs meanwhile will generate a characteristic current shape, in this work, the huge difference in the current rise time of 5 and 15 nm Pt NPs colliding on an Au ultramicroelectrode (d = 30 μm) was originally used to develop a size-resolved SECBS for multiplex immunoassays of miRNAs. The limit concentration that can be detected was 0.5 fM. Compared with conventional electrochemical biosensors for multiplex immunoassays, for the size-resolved SECBS, one does not need to worry about potential overlapping. Therefore, the proposed method demonstrates a promising potential for the application of SECBS in multiplex immunoassays.

Keywords: single entity; size resolved; multiplex immunoassays; size; entity collision; collision biosensing

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.