LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioinspired Construction of Uranium Ion Trap with Abundant Phosphate Functional Groups.

Photo by agnisyulia from unsplash

Highly efficient extraction of radioactive uranium from aqueous solution remains a serious task in the nuclear energy field. To address this, we here create an effective uranium ion trap by… Click to show full abstract

Highly efficient extraction of radioactive uranium from aqueous solution remains a serious task in the nuclear energy field. To address this, we here create an effective uranium ion trap by using a novel and facile strategy that introduces bioinspired moiety phytic acid (PA) into highly robust PCN-222. The resultant metal-organic framework (MOF)-based uranium ion trap (PCN-222-PA) with a high density of accessible phosphate groups exhibits a remarkable U(VI) uptake capacity (401.6 mg·g-1), surpassing most of the reported phosphorus-modified MOFs and various other MOF adsorbents. Kinetics study reveals that PCN-222-PA can reduce the uranium concentration from 10 mg L-1 to 21 μg L-1, below the acceptable limit defined by the US Environmental Protection Agency. In addition, PCN-222-PA also shows good selectivity and high stability as well as excellent recyclability toward uranium capture. Our work demonstrates a new strategy to design functional MOFs with abundant phosphate groups and provides a new perspective for extracting uranium from aqueous solution.

Keywords: pcn 222; abundant phosphate; uranium ion; ion trap

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.