LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Remarkable Effects of Lanthanide Substitution for the Y-Site on the Oxygen Storage/Release Performance of YMnO3+δ.

Lanthanide-substituted YMnO3+δ nanoparticles with the hexagonal phase, denoted as R0.25Y0.75MnO3+δ (R = Er, Dy, Tb, Gd, and Sm), have been successfully synthesized by the polymerized complex method. The substitutions did… Click to show full abstract

Lanthanide-substituted YMnO3+δ nanoparticles with the hexagonal phase, denoted as R0.25Y0.75MnO3+δ (R = Er, Dy, Tb, Gd, and Sm), have been successfully synthesized by the polymerized complex method. The substitutions did not largely affect the morphologies and specific surface area of the obtained R0.25Y0.75MnO3+δ nanoparticles. From the evaluation for the oxygen storage/release properties, the oxygen storage capacity (OSC) increased significantly by the Tb substitution, and the oxygen absorption/release rate strongly depended on the ion size of the substituted lanthanides. It was found that Tb4+ existed in Tb0.25Y0.75MnO3+δ after oxygen absorption, demonstrating that the remarkable increase in the OSC of the Tb-substituted sample was due to the oxidation of not only Mn3+ to Mn4+ but also Tb3+ to Tb4+. In addition, the unit cell volume increasing with the R ion size, which can lead to the promotion of the oxygen diffusion in the crystal structure, was the factor leading to the increase of the oxygen absorption rate. Especially, Sm0.25Y0.75MnO3+δ showed an excellent OSC of 3 + δ = 3.34 (the weight increase rate was 2.64 wt %) even under a rapid temperature swing rate of 20 °C/min.

Keywords: oxygen; 25y0 75mno3; oxygen storage; storage release

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.