LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

HTL-Free Sb2(S, Se)3 Solar Cells with an Optimal Detailed Balance Band Gap.

Photo from wikipedia

Antimony chalcogenides are widely studied as a light-absorbing material due to their merits of low toxicity, efficient cost, and excellent photovoltaic properties. However, the band gaps of antimony selenide (approximately… Click to show full abstract

Antimony chalcogenides are widely studied as a light-absorbing material due to their merits of low toxicity, efficient cost, and excellent photovoltaic properties. However, the band gaps of antimony selenide (approximately 1.1 eV) and antimony sulfide (approximately 1.7 eV) both deviate from the optimal detailed balance band gap (∼1.3 eV) for terrestrial single-junction solar cells. Notably, the band gap of Sb2(S, Se)3 can be tunable in the range from 1.1 to 1.7 eV, which can cover the detailed balance band gap. In this work, the vapor transport deposition method with two independent evaporation sources is used to deposit Sb2(S, Se)3 thin films. By carefully optimizing the evaporation temperature and the start evaporation time of the Sb2Se3 and Sb2S3 sources, a suitable band gap of 1.33 eV is obtained. Finally, on the basis of the optimal Sb2(S, Se)3 films, Sb2(S, Se)3 solar cells without a hole transport layer achieved an efficiency of 7.03%.

Keywords: gap; detailed balance; band gap; sb2; balance band

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.