LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Micro-pin-finned Surfaces with Fractal Treelike Hydrophilic Networks for Flow Boiling Enhancement.

Photo from wikipedia

Due to its outstanding heat transfer performance, flow boiling has a wide range of applications in many fields, especially for cooling of electronic devices. Previous studies have shown that the… Click to show full abstract

Due to its outstanding heat transfer performance, flow boiling has a wide range of applications in many fields, especially for cooling of electronic devices. Previous studies have shown that the liquid replenishment on the downstream of the heating surface is the critical restriction of the increase of the critical heat flux (CHF). In this work, we designed a series of heterogeneous surfaces with fractal treelike hydrophilic networks for flow boiling enhancement. The micro-pin-finned surface structures are expected to increase the CHF and reduce the superheat by its high wickability. Moreover, by virtue of the efficient transport capacity of treelike networks, the fractal hydrophilic paths are designed to serve as the liquid delivery channels for the liquid replenishment on the downstream of the heating surface. The heterogeneous surfaces improve the comprehensive boiling heat transfer performance, especially the CHF, which is 82.2% higher than that of the smooth surface and 5.4% higher than the surface homogeneously covered by the microstructure with twice of the extended surface area. This work provides reference for the design of heterogeneous surfaces with both smooth and structured parts to increase the flow boiling CHF to some extent.

Keywords: surfaces fractal; flow boiling; treelike hydrophilic; surface; hydrophilic networks; fractal treelike

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.