The crystallinity of a nonfullerene small-molecule acceptor plays an important function in the bimolecular recombination and carrier transfer of polymer solar cells (PSCs). However, because of the competition between the… Click to show full abstract
The crystallinity of a nonfullerene small-molecule acceptor plays an important function in the bimolecular recombination and carrier transfer of polymer solar cells (PSCs). However, because of the competition between the donor (PBDB-T) and acceptor (ITIC) in processes of phase separation and crystallization, the PBDB-T preferentially forms a crystalline network, which limits the molecular diffusion of ITIC and leads to the weak crystallinity of ITIC, eventually restricting the photoelectric conversion efficiency (PCE) of PSCs. Therefore, in our work, a small-molecule biomaterial, Gly-His-Lys-Cu (SMBM GHK-Cu), is incorporated into binary PBDB-T:ITIC to construct a PBDB-T:ITIC:GHK-Cu ternary system. The addition of GHK-Cu increases ITIC crystallinity and promotes the formation in continuous single-phase domains of PBDB-T and ITIC, which creates an optimized bicontinuous network path to increase and balance charge transmission in PSCs. Meanwhile, GHK-Cu makes energy transfer from GHK-Cu to PBDB-T appreciably efficient, improving the photon capture and exciton-generation rate of PBDB-T. Moreover, it can form a complementary absorption spectrum with PBDB-T and ITIC, which enhances the PCE of ternary devices. Excitingly, the PCE of PSC-based PBDB-T:ITIC is enhanced from 10.28% to 12.07% via incorporating 0.1 wt % GHK-Cu into PBDB-T:ITIC, in which the enhanced open voltage (VOC) is 0.92 V, the short-circuit current (JSC) is 17.87 mA/cm2, and the fill factor (FF) is 73.4%. Meanwhile, the PCE of PSC-based PM6:Y6 is also enhanced from 15.21% for a binary PSC to 17.11% for ternary PSC-based PM6:Y6:0.1 wt % GHK-Cu. This work shows that the cheap and environmentally friendly GHK-Cu has great potential for application in tuning the crystallinity and phase separation of the active layer.
               
Click one of the above tabs to view related content.