LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Appraisal of Chitosan-Gum Arabic-Coated Bipolymeric Nanocarriers for Efficient Dye Removal and Eradication of the Plant Pathogen Botrytis cinerea.

Photo by igorson from unsplash

The treatment of textile wastewater comprising many dyes as contaminants endures an essential task for environmental remediation. In addition, combating antifungal multidrug resistance (MDR) is an intimidating task, specifically owing… Click to show full abstract

The treatment of textile wastewater comprising many dyes as contaminants endures an essential task for environmental remediation. In addition, combating antifungal multidrug resistance (MDR) is an intimidating task, specifically owing to the limited options of alternative drugs with multitarget drug mechanisms. Incorporating natural polymeric biomaterials for drug delivery provides desirable properties for drug molecules, effectively eradicating MDR fungal growth. The current study fabricated the bipolymeric drug delivery system using chitosan-gum arabic-coated liposome 5ID nanoparticles (CS-GA-5ID-LP-NPs). This study focused on improving the solubility and sustained release profile of 5I-1H-indole (5ID). These NPs were characterized and tested mechanically as a dye adsorbent as well as their antifungal potencies against the plant pathogen, Botrytis cinerea. CS-GA-5ID-LP-NPs showed 71.23% congo red dye removal compared to crystal violet and phenol red from water and effectively had an antifungal effect on B. cinerea at 25 μg/mL MIC concentrations. The mechanism of the inhibition of B. cinerea via CS-GA-5ID-LP-NPs was attributed to stabilized microtubule polymerization in silico and in vitro. This study opens a new avenue for designing polymeric NPs as adsorbents and antifungal agents for environmental and agriculture remediation.

Keywords: plant pathogen; gum arabic; chitosan gum; cinerea; 5id nps; arabic coated

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.