LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uniform Deposition of Li-Metal Anodes Guided by 3D Current Collectors with In Situ Modification of the Lithiophilic Matrix.

The lithium (Li)-metal anode is deemed as the "holy gray" of the next-generation Li-metal system because of its high theoretical specific capacity, minimal energy density, and lowest standard electrode potential.… Click to show full abstract

The lithium (Li)-metal anode is deemed as the "holy gray" of the next-generation Li-metal system because of its high theoretical specific capacity, minimal energy density, and lowest standard electrode potential. Nevertheless, its commercial application has been limited by the large volume variation during charge and discharge, the unstable interface between the Li metal and electrolyte, and uneven deposition of Li. Herein, we present a 3D host (Cu) with lithiophilic matrix (CuO and SnO2) in situ modification via a facile ammonia oxidation method to serve as a current collector for the Li-metal anode. The 3D Cu host embellished by CuO and SnO2 is abbreviated as 3D CSCC. By increasing interfacial activity, lowering the nucleation barrier, and accommodating changes in volume of the Li metal, the 3D CSCC electrode effectively demonstrates a homogeneous and dendrite-free deposition morphology with an excellent cycling performance up to 3000 h at a 1.0 mA cm-2 current density. Additionally, the full cells paired with Li@3D CSCC anodes and LiCoO2 cathodes show good capacity retention performance at 0.2 C.

Keywords: metal; lithiophilic matrix; deposition; situ modification

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.