LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning Site Energy by XO6 Units in LiX2(PO4)3 Enables High Li Ion Conductivity and Improved Stability.

Photo by martindorsch from unsplash

Solid-state electrolytes (SSEs) with high ion conductivity are necessary for all-solid-sate lithium ion batteries. Here, a less studied NASICON-type LiZr2(PO4)3 (LZP) is screened out from seven LXP compounds (LiX2(PO4)3, X… Click to show full abstract

Solid-state electrolytes (SSEs) with high ion conductivity are necessary for all-solid-sate lithium ion batteries. Here, a less studied NASICON-type LiZr2(PO4)3 (LZP) is screened out from seven LXP compounds (LiX2(PO4)3, X = Si, Ge, Sn, Ti, Zr, Hf, and Mo), which combines the electrochemical stability with high Li conductivity. The bond valence site energy (BVSE), climbing image nudged elastic band (Cl-NEB) method, and electrochemical phase diagram prove LZP has a lower Li migration barrier and the largest electrochemical stability window. The underlying reason for high Li conductivity is analyzed from the structural features to the electronic structures. Furthermore, the XO6 unit mixed frameworks Li1.667Ca0.333Zr1.667(PO4)3 (LCZP) and Li1.667Mg0.333Zr1.667(PO4)3 (LMZP) exhibit high Li ion conductivity associated with a very low Li migration barrier (∼0.20 eV). This work opens a new avenue of broad compositional spaces in LXP for SSEs.

Keywords: high ion; lix2 po4; conductivity; ion; stability; ion conductivity

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.