LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-Active Au/TPU Electrospun Nanofibers.

Photo from wikipedia

Development of wearable sensing platforms is essential for the advancement of continuous health monitoring and point-of-care testing. Eccrine sweat pH is an analyte that can be noninvasively measured and used… Click to show full abstract

Development of wearable sensing platforms is essential for the advancement of continuous health monitoring and point-of-care testing. Eccrine sweat pH is an analyte that can be noninvasively measured and used to diagnose and aid in monitoring a wide range of physiological conditions. Surface-enhanced Raman scattering (SERS) offers a rapid, optical technique for fingerprinting of biomarkers present in sweat. In this paper, a mechanically flexible, nanofibrous, SERS-active substrate was fabricated by a combination of electrospinning of thermoplastic polyurethane (TPU) and Au sputter coating. This substrate was then investigated for suitability toward wearable sweat pH sensing after functionalization with two commonly used pH-responsive molecules, 4-mercaptobenzoic acid (4-MBA), and 4-mercaptopyridine (4-MPy). The developed SERS pH sensor was found to have good resolution (0.14 pH units for 4-MBA; 0.51 pH units for 4-MPy), with only 1 μL of sweat required for a measurement, and displayed no statistically significant difference in performance after 35 days (p = 0.361). Additionally, the Au/TPU nanofibrous SERS pH sensors showed fast sweat-absorbing ability as well as good repeatability and reversibility. The proposed methodology offers a facile route for the fabrication of SERS substrates which could also be used to measure a wide range of health biomarkers beyond sweat pH.

Keywords: flexible sweat; sweat; tpu; wearable flexible; sers active; fabrication wearable

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.