LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable Anion Exchange Membrane Conductivity and Permselectivity via Non-Covalent, Hydrogen Bond Cross-Linking.

Photo from wikipedia

Ion exchange membranes (IEMs) are a key component of electrochemical processes that purify water, generate clean energy, and treat waste. Most conventional polymer IEMs are covalently cross-linked, which results in… Click to show full abstract

Ion exchange membranes (IEMs) are a key component of electrochemical processes that purify water, generate clean energy, and treat waste. Most conventional polymer IEMs are covalently cross-linked, which results in a challenging tradeoff relationship between two desirable properties─high permselectivity and high conductivity─in which one property cannot be changed without negatively affecting the other. In an attempt to overcome this limitation, in this work we synthesized a series of anion exchange membranes containing non-covalent cross-links formed by a hydrogen bond donor (methacrylic acid) and a hydrogen bond acceptor (dimethylacrylamide). We show that these monomers act synergistically to improve both membrane permselectivity and conductivity relative to a control membrane without non-covalent cross-links. Furthermore, we show that the hydrogen bond donor and acceptor loading can be used to tune permselectivity and conductivity relatively independently of one another, escaping the tradeoff observed in conventional membranes.

Keywords: hydrogen bond; conductivity; exchange; non covalent; permselectivity

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.