LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Promoting the Electrocatalytic Reduction of CO2 on Ultrathin Porous Bismuth Nanosheets with Tunable Surface-Active Sites and Local pH Environments.

Photo by clemono from unsplash

Electrochemical CO2 reduction reaction (CO2RR) yielding value-added chemicals provides a sustainable approach for renewable energy storage and conversion. Bismuth-based catalysts prove to be promising candidates for converting CO2 and water… Click to show full abstract

Electrochemical CO2 reduction reaction (CO2RR) yielding value-added chemicals provides a sustainable approach for renewable energy storage and conversion. Bismuth-based catalysts prove to be promising candidates for converting CO2 and water into formate but still suffer from poor selectivity and activity and/or sluggish kinetics. Here, we report that ultrathin porous Bi nanosheets (Bi-PNS) can be prepared through a controlled solvothermal protocol. Compared with smooth Bi nanoparticles (Bi-NPs), the ultrathin, rough, and porous Bi-PNS provide more active sites with higher intrinsic reactivities for CO2RR. Moreover, such high activity further increases the local pH in the vicinity of the catalyst surfaces during electrolysis and thus suppresses the competing hydrogen evolution reaction. As a result, the Bi-PNS exhibit significantly boosted CO2RR properties, showing a Faradaic efficiency of 95% with an effective current density of 45 mA cm-2 for formate evolution at the potential of -1.0 V versus reversible hydrogen electrode.

Keywords: ultrathin porous; active sites; promoting electrocatalytic; reduction; co2; bismuth

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.