LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct Multimodal Nanoscale Visualization of Early Phosphorus-Based Antiwear Tribofilm Formation.

Photo by trnavskauni from unsplash

Understanding the mechanism of antiwear (AW) tribofilm formation and how to tune surface chemistry to control functionality is essential for the development of the next generation of oil lubricants. In… Click to show full abstract

Understanding the mechanism of antiwear (AW) tribofilm formation and how to tune surface chemistry to control functionality is essential for the development of the next generation of oil lubricants. In particular, understanding and optimizing early AW tribofilm formation can increase the energy efficiency of mechanical systems. However, the mechanism for how these films form is not well understood. The majority of prior work has focused on analyzing only end-of-test surfaces long after the film has formed. In this work, we develop an in situ multimodal chemical imaging methodology to directly visualize the early formation of AW films on steel surfaces. We investigate an oil formulation containing a phosphorus-based additive commonly used to protect surfaces from wear and fatigue processes in machine elements, such as gears, bearings, and sliding contacts. Using nanoscale multimodal chemical imaging on combined platforms of atomic force microscopy (AFM) coupled directly with in situ nano-infrared (nano-IR) spectroscopy, and further combined ex situ with time-of-flight secondary ion mass spectrometry (ToF-SIMS), we demonstrate a direct correlation between changes in friction and local surface chemistry. In these experiments, the AFM probe acts as a single asperity contact to generate the tribofilm as well as a tool to analyze it in situ as it is forming. To verify our in situ measurements, we compare these results to the ex situ ToF-SIMS of macroscale block-on-ring tribometer-formed samples. The understanding gained here on how AW films form and how film properties can be modified by tuning the chemistry of the additives will facilitate developing transmission fluids to meet increasing demands for vehicle performance and efficiency.

Keywords: phosphorus based; chemistry; antiwear tribofilm; tribofilm formation; formation

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.