LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery.

Photo from wikipedia

Magnetic micro-/nanorobots have been regarded as a promising platform for targeted drug delivery, and tremendous strategies have been developed in recent years. However, realizing precise and efficient drug delivery in… Click to show full abstract

Magnetic micro-/nanorobots have been regarded as a promising platform for targeted drug delivery, and tremendous strategies have been developed in recent years. However, realizing precise and efficient drug delivery in vivo still remains challenging, in which the versatile integration of good biocompatibility and reconfiguration is the main obstacle for micro-/nanorobots. Herein, we proposed a novel strategy of magnetic biohybrid microrobot multimers (BMMs) based on Chlorella (Ch.) and demonstrated their great potential for targeted drug delivery. The spherical Ch. cells around 3-5 μm were magnetized with Fe3O4 to fabricate biohybrid microrobots and then loaded with doxorubicin (DOX). Using magnetic dipolar interactions, the microrobot units could reconfigure into chain-like BMMs as tiny dimers, trimers, and so forth via attraction-induced self-assembly and disassemble reversibly via repulsion. The BMMs exhibited diverse swimming modes including rolling and tumbling with high maneuverability, and the rolling dimer's velocity could reach 107.6 μm/s (∼18 body length/s) under a 70 Gs precessing magnetic field. Furthermore, the BMMs exhibited low cell toxicity, high DOX loading capacity, and pH-triggered drug release, which were verified by chemotherapy experiments toward HeLa cancer cells. Due to the remarkable versatility and facile fabrication, the BMMs demonstrate great potential for targeted anticancer therapy.

Keywords: magnetic biohybrid; targeted drug; drug delivery; drug; biohybrid microrobot

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.