LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Confining MoSe2 Nanosheets into N-Doped Hollow Porous Carbon Microspheres for Fast-Charged and Long-Life Potassium-Ion Storage.

Photo by roanlavery from unsplash

The potassium-ion battery (PIB) is the most promising alternative to a lithium-ion battery (LIB). Exploitation of a suitable electrode material is crucial to promote the development of PIBs. The MoSe2… Click to show full abstract

The potassium-ion battery (PIB) is the most promising alternative to a lithium-ion battery (LIB). Exploitation of a suitable electrode material is crucial to promote the development of PIBs. The MoSe2 material has attracted much attention due to its high theoretical capacity, unique layered structure, and good conductivity. However, the potassium storage property of MoSe2 has been suffering from structural fragmentation and sluggish reaction kinetic caused by large potassium ions upon insertion/extraction, which needs to be further improved. Herein, the MoSe2 nanosheets are confined into N-doped hollow porous carbon microspheres (MoSe2@N-HCS) by spray drying and high-temperature selenization. It delivers a superior rate performance of 113.7 mAh g-1 at 10 A g-1 and remains at a high capacity of 158.3 mAh g-1 at 2 A g-1 even after 16 700 cycles for PIBs. The excellent electrochemical performance can be attributed to unique structure, N-doping, and robust chemical bonds. The storage mechanism of MoSe2 for potassium ions was explored. The outstanding properties of MoSe2@N-HCS make it a promising anode material for PIBs.

Keywords: mose2 nanosheets; potassium ion; hollow porous; ion; potassium; doped hollow

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.