LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crystal Facet Structure Dependence and Promising Pd-Based Catalytic Materials for Resistance toward Deactivation and Catalytic Performance in Direct Oxidative Esterification.

Photo from wikipedia

Designing an effective Pd-based catalytic material with higher stability and catalytic performance for direct oxidative esterification is a great challenge. In this work, a systematic study on the activation mechanism… Click to show full abstract

Designing an effective Pd-based catalytic material with higher stability and catalytic performance for direct oxidative esterification is a great challenge. In this work, a systematic study on the activation mechanism of H2O on the different crystal facets of monometallic Pd, bimetallic Pd-Pb(Bi), and trimetallic Pd-Pb-Bi catalysts was first performed, which showed that the (111) crystal facet of Pd-Pb-Bi had stronger stability of resistance toward deactivation induced by H2O. Further, a detailed direct oxidative esterification mechanism on the screened crystal facet was investigated, where Pd-Pb-Bi catalytic materials showed higher stability and intrinsic catalytic performance for direct oxidation esterification, which was attributed to a dimer Pd-active unit and the synergistic effect of Pb and Bi compared to that of Pd-Pb(Bi) and Pd and also applied to other aldehydes with electron-donating groups producing corresponding esters. Meanwhile, the essential relationship between structures of Pd-based catalytic materials and catalytic performance for direct oxidation esterification was obtained. This work opens up a new simultaneous path for improving the stability of resistance toward deactivation and catalytic performance for direct oxidative esterification of Pd-based catalytic materials, which can be realized by regulating the surface-active unit with dimer Pd adsorbed more O-preadsorbed using Pb and Bi promoters.

Keywords: performance direct; esterification; based catalytic; catalytic performance; direct oxidative

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.