LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomic-Level Changes during Electrochemical Cycling of Oriented LiMn2O4 Cathodic Thin Films.

Spinel LiMn2O4 is an attractive lithium-ion battery cathode material that undergoes a complex series of structural changes during electrochemical cycling that lead to rapid capacity fading, compromising its long-term performance.… Click to show full abstract

Spinel LiMn2O4 is an attractive lithium-ion battery cathode material that undergoes a complex series of structural changes during electrochemical cycling that lead to rapid capacity fading, compromising its long-term performance. To gain insights into this behavior, in this report we analyze changes in epitaxial LiMn2O4 thin films during the first few charge-discharge cycles with atomic resolution and correlate them with changes in the electrochemical properties. Impedance spectroscopy and scanning transmission electron microscopy are used to show that defect-rich LiMn2O4 surfaces contribute greatly to the increased resistivity of the battery after only a single charge. Sequences of {111} stacking faults within the films were also observed upon charging, increasing in number with further cycling. The atomic structures of these stacking faults are reported for the first time, showing that Li deintercalation is accompanied by local oxygen loss and relaxation of Mn atoms onto previously unoccupied sites. The stacking faults have a more compressed structure than the spinel matrix and impede Li-ion migration, which explains the observed increase in thin-film resistivity as the number of cycles increases. These results are used to identify key factors contributing to conductivity degradation and capacity fading in LiMn2O4 cathodes, highlighting the need to develop techniques that minimize defect formation in spinel cathodes to improve cycle performance.

Keywords: atomic level; electrochemical cycling; thin films; changes electrochemical; level changes; stacking faults

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.