LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rationally Designed Ag@polymer@2-D LDH Nanoflakes for Bifunctional Efficient Electrochemical Sensing of 4-Nitrophenol and Water Oxidation Reaction.

Photo by ryanhoffman007 from unsplash

The rational design and demonstration of a facile sequential template-mediated strategy to construct noble-metal-free efficient bifunctional electrocatalysts for efficient oxygen evolution reaction (OER) and electrocatalytic detection of hazardous environmental 4-nitrophenol… Click to show full abstract

The rational design and demonstration of a facile sequential template-mediated strategy to construct noble-metal-free efficient bifunctional electrocatalysts for efficient oxygen evolution reaction (OER) and electrocatalytic detection of hazardous environmental 4-nitrophenol (4-NP) have continued as a major challenging task. Herein, we construct a novel Ag@polymer/NiAl LDH (designated as APL) nanohybrid as an efficient bifunctional electrocatalyst by a simple hydrolysis method. The well-fabricated APL/GCE exhibited an extensive linear range from 0.1 to 100 μM in optimized conditions. It showed a detection limit (LOD) of 0.0096 μM (9.6 nM) (S/N = 3) for 4-NP in pH 6 by differential pulse voltammetry (DPV). Meanwhile, the newly fabricated APL exhibited outstanding OER activity with a very low overpotential of 259 mV to deliver 10 mA cm-2 current density (J) at a scan rate of 5 mV/s. The Tafel plot value of APL is low (97 mV/dec) compared to that of the benchmark RuO2 due to a fast kinetic reaction. Besides, the durability of the electrocatalyst was assessed by a chronoamperometry test (CA) for 36 h at 1.55 mV vs RHE, and the long-term cycling stability was analyzed by using cyclic voltammetry (CV); after 5000 cycles, the electrocatalyst was highly stable. These demonstrated results could lead to an alternative electrocatalyst construction for the bifunctionally efficient electrochemical sensing of 4-nitrophenol and oxygen evolution reaction.

Keywords: sensing nitrophenol; reaction; polymer; efficient electrochemical; ldh; electrochemical sensing

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.