LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous Efficient Decontamination of Bacteria and Heavy Metals via Capacitive Deionization Using Polydopamine/Polyhexamethylene Guanidine Co-deposited Activated Carbon Electrodes.

Photo by michael_schiffer_design from unsplash

The contamination of pathogenic micro-organisms and heavy metals in drinking water sources poses a serious threat to human health, which raises the demand for efficient water treatments. Herein, multi-functional capacitive… Click to show full abstract

The contamination of pathogenic micro-organisms and heavy metals in drinking water sources poses a serious threat to human health, which raises the demand for efficient water treatments. Herein, multi-functional capacitive deionization (CDI) electrodes were developed for the simultaneous decontamination of bacteria and heavy metal contaminants. Polyhexamethylene guanidine (PHMG), an antibacterial polymer, was deposited on the surface of the activated carbon (AC) electrode with the assistance of mussel-inspired polydopamine (PDA) chemistry. The main characterization results proved successful co-deposition of PDA and PHMG on the AC electrode, forming a hydrophilic coating layer in one step. Electrochemical analyses indicated that the AC-PDA/PHMG electrodes presented satisfactory capacitive behaviors, with outstanding salt adsorption capacity and cycling stability. The modified electrodes also exhibit excellent disinfection performance and heavy metal adsorption performance. The bacterial elimination rate of co-deposited electrodes grew along with the increase in the PHMG content. Particularly, AC-PDA/PHMG2 electrodes successfully removed and deactivated 99.11% Escherichia coli and 98.67% Pseudomonas aeruginosa (104 CFU mL-1) in water within 60 min. Furthermore, three flow cells made by AC-PDA/PHMG2 electrodes connected in series achieved efficient removal of salt, heavy metals such as lead and cadmium, and bacteria simultaneously, which indicated that the adsorption performance is significantly improved compared with pristine AC electrodes. These results denote the enormous potential of this one-step prepared multi-functional electrodes for facile and effective water purification using CDI technology.

Keywords: decontamination bacteria; polyhexamethylene guanidine; capacitive deionization; heavy metals; activated carbon; bacteria heavy

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.