LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Protein-Cloaked Nanoparticles for Enhanced Cellular Association and Controlled Pathophysiology via Immunosurveillance Escape.

Photo from wikipedia

Weak interactions play an important role in soft corona (SC) formation and thus help in evaluating the biological fate of the nanoparticles (NPs). Preadsorption of specific proteins on the NP… Click to show full abstract

Weak interactions play an important role in soft corona (SC) formation and thus help in evaluating the biological fate of the nanoparticles (NPs). Preadsorption of specific proteins on the NP surface, leading to SC formation, has been found to help NPs in evading immunosurveillance. However, the role of different preadsorbed biomolecules in determining the NP pathophysiology and cellular association, upon their re-exposure to in vivo conditions, still remains elusive. Here, differently charged gold NPs were precoated with two different blood components, viz. red blood cells and human serum albumin protein, and these were then re-exposed to human serum. Cloaking NPs with protein improved the NP colloidal stability and other physico-chemical properties along with increased cellular association. Detailed proteomic analysis suggested that protein-camouflaged NPs showed a decrease in immune-responsive proteins compared to their bare counterparts. Further, it was also observed that the secondary protein signature on the NP surface was governed by primary protein coating; however, the event was more or less NP charge-independent. This study will pave the path for future strategies to make NPs invincible to the immunosurveillance system of the body.

Keywords: protein cloaked; cellular association; pathophysiology; immunosurveillance; protein

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.