LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adjusting Oxygen Redox Reaction and Structural Stability of Li- and Mn-Rich Cathodes by Zr-Ti Dual-Doping.

Photo by mathieustern from unsplash

Li- and Mn-rich cathodes (LMRs) with cationic and anionic redox reactions are considered as promising cathode materials for high-energy-density Li-ion batteries. However, the oxygen redox process leads to lattice oxygen… Click to show full abstract

Li- and Mn-rich cathodes (LMRs) with cationic and anionic redox reactions are considered as promising cathode materials for high-energy-density Li-ion batteries. However, the oxygen redox process leads to lattice oxygen loss and structure degradation, which would induce serious voltage fade and capacity loss and thus limit the practical application. High-valent and electrochemical inactive d0 element doping is an effective method to tune the crystal and electronic structures, which are the main factors for the electrochemical stability. Herein, noticeably inhibited oxygen loss, reduced voltage fade, enhanced rate performance, and improved structure stability and thermal stability of LMRs have been realized by Ti4+ and Zr4+ dual-doping. The underlying modulation mechanisms are unraveled by combining differential electrochemical mass spectrometry, soft X-ray absorption spectroscopies, in situ XRD measurements, etc. The dual-doping reduces the covalency of the TM-O bond, mitigates the irreversible oxygen release during the oxygen redox, and stabilizes the layered framework. The expanded lithium layer facilitates the lithium diffusion kinetics and structure stability. This study may result in the fundamental understanding of crystal and electronic structure evolution in LMRs and contribute to the development of high capacity cathodes.

Keywords: oxygen redox; rich cathodes; oxygen; stability; dual doping

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.