Oxygen-based electrochemical random-access memories (O-ECRAMs) are promising synaptic devices for neuromorphic applications because of their near-ideal synaptic characteristics and compatibility with complementary metal-oxide-semiconductor processes. However, the correlation between material parameters… Click to show full abstract
Oxygen-based electrochemical random-access memories (O-ECRAMs) are promising synaptic devices for neuromorphic applications because of their near-ideal synaptic characteristics and compatibility with complementary metal-oxide-semiconductor processes. However, the correlation between material parameters and synaptic properties of O-ECRAM devices has not yet been elucidated. Here, we propose the critical design parameters to fabricate an ideal ECRAM device. Based on the experimental data and simulation results, it is revealed that consistent ion supply from the electrolyte and rapid ion diffusion in the channel are critical factors for ideal synaptic characteristics. To optimize these parameters, crystalline WO2.7 exhibiting fast ion diffusivity and ZrO1.7 exhibiting an appropriate ion conduction energy barrier (1.1 eV) are used as a channel and an electrolyte, respectively. As a result, synaptic characteristics with near-ideal weight-update linearity in the nanosiemens conductance range are achieved. Finally, a selector-less O-ECRAM device is integrated into a 2 × 2 array, and high recognition accuracy (94.83%) of the Modified National Institute of Standards and Technology pattern is evaluated.
               
Click one of the above tabs to view related content.