LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical Dual Transducer for Fluidic Self-Sensing Actuation.

Photo from wikipedia

An electrochemical dual transducer (ECDT) based on a chemical reaction is a new fluidic machine for self-sensing actuation. Recently, incorporating sensors has enhanced the multifunctionality of soft robots with fluidic… Click to show full abstract

An electrochemical dual transducer (ECDT) based on a chemical reaction is a new fluidic machine for self-sensing actuation. Recently, incorporating sensors has enhanced the multifunctionality of soft robots with fluidic machines such as pumps or compressors. However, conventional fluidic systems have limitations such as heavy weight, noise, bloat, and complexity. In our previous research, we adopted small-sized, lightweight, and quiet electrohydrodynamic pumps for soft robots. In this paper, we propose a new ECDT by exploring the possibility of an electrohydrodynamic (EHD) pump to sense the flow of the working fluid. The current in the ECDT is proportional to 1/3 of the inflowing velocity. We also clarify its mechanism, mathematical model, range of detectable flow rate, sensitivity factor, relaxation time, response speed, and pumping characteristics. The advantages of the ECDT are their small size, light weight, simple fabrication process, extensibility of the sensing range, and sensitivity. We also demonstrate a suction cup driven by the ECDT, which can detect, hold, and release objects. We expect a bidirectional ECDT will realize a small, multifunctional, and straightforward fluidic system.

Keywords: electrochemical dual; self sensing; dual transducer; sensing actuation

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.