LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microfluidic Assembly of Microblocks into Interlocked Structures for Enhanced Strength and Toughness.

Photo by majesticlukas from unsplash

Compared with monolithic materials, topologically interlocked materials (TIMs) exhibit higher toughness based on their enhanced crack deflection and deformation tolerance. Importantly, by reducing the block size of TIMs, their structural… Click to show full abstract

Compared with monolithic materials, topologically interlocked materials (TIMs) exhibit higher toughness based on their enhanced crack deflection and deformation tolerance. Importantly, by reducing the block size of TIMs, their structural strength can also be improved due to the reduced flexural span. However, the assembly of microscale blocks remains a huge challenge due to the inadequacy of nanoscale self-assembly or macroscale pick-and-place operations. In this work, octahedral microblocks are fabricated and constructed into interlocked structures with different patterns through microfluidic channels with variable cross sections. The pattern of the interlocked panel is demonstrated to affect its strength and toughness. The failure strength and energy absorption of assembled panels significantly exceed that of their monolithic counterpart by ∼33% and ∼19.1 folds, respectively. Generally, the presented microfluidic method provides a unique technique for the assembly of interlocked architecture, which facilitates the design and fabrication of TIMs with highly improved strength and toughness.

Keywords: toughness; strength; assembly microblocks; interlocked structures; microfluidic assembly; strength toughness

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.