LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the Temperature Stability of 0.42PNN-0.21PZ-0.37PT Ceramics through Texture Engineering.

Photo by woods from unsplash

Although the MPB composition 0.42PNN-0.21PZ-0.37PT ceramic has high piezoelectric properties, its temperature stability at room temperature is rather poor due to the low phase-transition temperature. By texture engineering using BaTiO3… Click to show full abstract

Although the MPB composition 0.42PNN-0.21PZ-0.37PT ceramic has high piezoelectric properties, its temperature stability at room temperature is rather poor due to the low phase-transition temperature. By texture engineering using BaTiO3 (BT) as the template, the temperature stability of this material can be greatly improved. In the temperature range from room temperature up to 140 °C, the high effective piezoelectric strain constant d33* of 0.42PNN-0.21PZ-0.37PT-3BT only changed by 4.9% from 1278 to 1215 pm/V, while the d33* of the nontextured counterpart changed by 46.7% from the room temperature value of 920 pm/V with the maximum deviation to 1350 pm/V at 80 °C. In addition, the textured ceramic has higher piezoelectric properties, lower dielectric loss, and slightly higher coercive field. The room-temperature figure-of-merit d33 × g33 for PNN-PZT-2BT is increased by as much as 42% compared with the nontextured counterpart. Our results demonstrated that texture engineering is an effective way to improve the temperature stability of the MPB composition piezoceramics.

Keywords: 42pnn 21pz; texture engineering; temperature stability; temperature; 21pz 37pt

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.