LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solvent-Diluent Interaction-Mediated Solvation Structure of Localized High-Concentration Electrolytes.

Photo from wikipedia

The latest developments of localized high-concentration electrolytes (LHCEs) shed light on stabilizing the high-energy-density lithium (Li) metal batteries. It is generally considered that the nonsolvating diluents introduced into the LHCEs… Click to show full abstract

The latest developments of localized high-concentration electrolytes (LHCEs) shed light on stabilizing the high-energy-density lithium (Li) metal batteries. It is generally considered that the nonsolvating diluents introduced into the LHCEs improve the viscosity and wettability of high-concentration electrolytes (HCEs) without changing their inner solvation structures, thus maintaining the highly coordinated contact ion pairs (CIPs) and ionic aggregates (AGGs) of the precursor HCEs with limited free solvent numbers and high Coulombic efficiency (CE) of Li metal anodes. Herein, we show an unexpected effect of the diluent amount on the solvation structures of the LHCEs: as the diluent amount increases, the proportions of free solvent molecules and CIPs rise up simultaneously. The latter is probably due to the partial splits of the AGGs via the dipole-dipole interactions between the diluent and solvent molecules. Accordingly, a moderately diluted LHCE shows the best Coulombic efficiency of Li metal anodes (99.6%), compared with the precursor HCE (97.4%) or highly diluted LHCE (99.0%). This work reveals a new criterion of the LHCE chemical formulation for the designing of advanced electrolytes for high-energy-density batteries.

Keywords: concentration electrolytes; high concentration; solvation; solvent diluent; localized high

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.