LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ferroelectric Proximity Effect and Topological Hall Effect in SrRuO3/BiFeO3 Multilayers.

Photo from wikipedia

Interfaces between complex oxides provide a unique opportunity to discover novel interfacial physics and functionalities. Here, we fabricate the multilayers of itinerant ferromagnet SrRuO3 (SRO) and multiferroic BiFeO3 (BFO) with… Click to show full abstract

Interfaces between complex oxides provide a unique opportunity to discover novel interfacial physics and functionalities. Here, we fabricate the multilayers of itinerant ferromagnet SrRuO3 (SRO) and multiferroic BiFeO3 (BFO) with atomically sharp interfaces. Atomically resolved transmission electron microscopy reveals that a large ionic displacement in BFO can penetrate into SRO layers near the BFO/SRO interfaces to a depth of 2-3 unit cells, indicating the ferroelectric proximity effect. A topological Hall effect is indicated by hump-like anomalies in the Hall measurements of the multilayer with a moderate thickness of the SRO layer. With magnetic measurements, it can be further confirmed that each SRO layer in the multilayers can be divided into interfacial and middle regions, which possess different magnetic ground states. Our work highlights the key role of functional heterointerfaces in exotic properties and provides an important guideline to design spintronic devices based on magnetic skyrmions.

Keywords: effect; topological hall; proximity effect; hall effect; ferroelectric proximity; effect topological

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.