LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoplatform to Investigate Tumor-Initiating Cancer Stem Cells: Breaking the Diagnostic Barrier.

Photo from wikipedia

Drug-resistant capacity in a small population of tumor-initiating cancer stem cells (tiCSCs) can be due to aberrant epigenetic changes. However, currently available conventional detection methods are inappropriate and cannot be… Click to show full abstract

Drug-resistant capacity in a small population of tumor-initiating cancer stem cells (tiCSCs) can be due to aberrant epigenetic changes. However, currently available conventional detection methods are inappropriate and cannot be applied to investigate the scarce population (tiCSCs). In addition, selective inhibitor drugs are shown to reverse epigenetic changes; however, each cancer type is discrete. Hence, it is essential to probe the resultant changes in tiCSCs even after therapy. Therefore, we have developed a multimode nanoplatform to investigate tiCSCs, detect epigenetic changes, and subsequently explore their transformation signals following drug therapy. We performed this by developing a surface-enhanced Raman scattering (SERS)-active nanoplatform integrated with n-dopant using an ultrafast laser ionization technique. The dopant functionalization enhances Raman scattering ability and permits label-free analysis of biomarkers in tiCSCs with the resolution down to the cellular level. Here, we investigated epigenetic biomarkers of tiCSCs in pancreatic and lung cancers. An extended study using inhibitor drugs demonstrates an unexpected increase of tiCSCs from lung cancer; this difference can be attributed to transformation changes in lung tiCSC. Thus, our work brings new insight into the differentiation abilities of CSCs upon epigenetic reversal, emphasizing unique perceptions in cancer treatment.

Keywords: tumor initiating; cancer stem; initiating cancer; nanoplatform investigate; stem cells; cancer

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.