LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Active and Stable Fe/Co/N Co-doped Carbon-Anchored Pd Nanoparticles for Oxygen Reduction Reaction.

Photo by clemono from unsplash

A highly active and stable electrocatalyst based on Pd nanoparticles anchored on zeolitic imidazolate framework-derived Fe/Co/N co-doped carbon (Pd/FeCoNC) is prepared. FeCo alloy nanoparticles are uniformly dispersed and wrapped by… Click to show full abstract

A highly active and stable electrocatalyst based on Pd nanoparticles anchored on zeolitic imidazolate framework-derived Fe/Co/N co-doped carbon (Pd/FeCoNC) is prepared. FeCo alloy nanoparticles are uniformly dispersed and wrapped by graphene layers in Fe/Co/N co-doped carbon (FeCoNC). The influences of carbonization temperature on the structure and catalytic activity of FeCoNC toward oxygen reduction reaction (ORR) are investigated. The FeCoNC prepared at 800 °C (FeCoNC-800) has a favorable ORR catalytic activity as a consequence of the synergistic effect of Fe/Co/N co-doping and hierarchical pore structures of coexisting micropores and mesopores. Pyridinic N in FeCoNC is a preferential adsorption site for anchoring Pd nanoparticles. Pd/FeCoNC exhibits both superior activity and durability to 40 wt % Pt/C at the same level of metallic mass loading, which shows a 44 mV higher half-wave potential (0.88 V) than Pt/C and a 91% remaining current of the initial after 10,000 s. The Fe/Co/N co-doping and hierarchical pores of FeCoNC contribute a large diffusion current, and the introduction of Pd realizes more positive onset and half-wave potentials. This work provides an easy way for preparing low-cost and high-efficiency catalysts for ORR.

Keywords: carbon; highly active; oxygen reduction; reduction reaction; doped carbon; active stable

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.