The removal of precursor solvents in perovskite wet films plays a vital role in controlling the quality of perovskite films and devices. The dripping antisolvent method (removing precursor solvents) has… Click to show full abstract
The removal of precursor solvents in perovskite wet films plays a vital role in controlling the quality of perovskite films and devices. The dripping antisolvent method (removing precursor solvents) has made great advances in small-area devices, but this method limits the preparation of large-area perovskite films. Vacuum quenching that evaporates solvents by dropping the pressure is a potential large-area manufacturing approach. Herein, we have conducted a systematic comparative study on these two methods of depositing perovskite films. It is found that vacuum quenching can obtain the same film quality and small-area device efficiency (∼22.5%) as the antisolvent method. However, on a large-area substrate, the fast vacuum quenching rate improves the solvent evaporation efficiency and nucleation density (i.e., forming a large number of crystal nuclei), thereby obtaining a more uniform and stable perovskite film. Notably, the manufacture window exceeds 10 min. As a result, the champion large-area (6 × 6 cm2) perovskite solar module exhibits an impressive efficiency (17.86%) and long-term operational stability. Furthermore, coupling slot-die coating, vacuum quenching can realize the industrial continuous deposition of large-area perovskite films, which is a potential route for large-scale production.
               
Click one of the above tabs to view related content.