LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hierarchical Response Network Boosts Solvent-Free Ionic Conductive Elastomers with Extreme Stretchability, Healability, and Recyclability for Ionic Sensors.

Photo from wikipedia

The construction of solvent-free ionic conductive elastomers with high mechanical stretchability and large dynamic reversibility of chain segments is highly desired yet challenging. Here, a hierarchical response network strategy is… Click to show full abstract

The construction of solvent-free ionic conductive elastomers with high mechanical stretchability and large dynamic reversibility of chain segments is highly desired yet challenging. Here, a hierarchical response network strategy is presented for preparing highly stretchable yet mechanical robust ionic conductive elastomer composites (ICECs), among which poly(ethylene oxide) (PEO) microcrystalline serves as a physical cross-linking site providing high mechanical strength and elasticity, while dense hydrogen bonds endow superior mechanical toughness and dynamic reversibility. Due to the formation of the hierarchical response network, the resultant ICECs exhibit intrinsically high stretchability (>1500%), large tensile strength (∼2.1 MPa), and high fracture toughness (∼28 MJ m-3). Intriguingly, due to the high reversibility of hydrogen-bonded networks, the ICECs after being crushed are capable of healing and recycling by simple hot-pressing for multiple cycles. Moreover, the ICECs are dissolvable under an alkaline condition and easily regenerated in an acid solution for manifold cycles. Importantly, the healed, recycled, and regenerated ICECs are capable of maintaining their initial mechanical elasticity and ionic conducting performance. Due to the integration of high stretchability, fatigue resistance, and ionic conductivity, the ICECs can readily work as a stretchable ionic conductor for skin-inspired ionic sensors for real-time and accurately sensing complex human motions. This study thus provides a promising strategy for the development of healable and renewable ionic sensing materials with high stretchability and mechanical robustness, demonstrating great potential in soft ionotronics.

Keywords: hierarchical response; response network; ionic conductive; stretchability

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.