Atomically dispersed nitrogen-coordinated transition-metal sites supported on graphene (TM-N4-C) offer promising potential for the electrochemical carbon dioxide reduction reaction (CO2RR). However, a few TM-Nx-C single-atom catalysts (SAC) are capable of… Click to show full abstract
Atomically dispersed nitrogen-coordinated transition-metal sites supported on graphene (TM-N4-C) offer promising potential for the electrochemical carbon dioxide reduction reaction (CO2RR). However, a few TM-Nx-C single-atom catalysts (SAC) are capable of reducing CO2 to multielectron products with high activity and selectivity. Herein, using density functional theory calculations, we investigated the electrocatalytic performance of a single TM atom embedded into a defective BCN nanosheet for CO2RR. The N and B atom co-coordinated TM center, namely, TM-B2N2, constructs a symmetry-breaking site, which strengthens the overlapping of atomic orbitals, and enables the linear CO2 to be curved and activated, compared to the weak coupling of CO2 with the symmetric TM-N4 site. Moreover, the TM-B2N2 sites play a role of dual-atom active sites, in which the TM atom serves as the carbon adsorption site and the B atom acts as the oxygen adsorption site, largely stabilizing the key intermediates, especially *COOH. The symmetry-breaking coordination structures shift the d-band center of the TM atom toward the Fermi level and thus facilitate CO2 reduction to hydrocarbons and oxygenates. As a result, different from the TM-N4-C structure that leads to CO as the major product, the Ni atom supported on BCN can selectively catalyze CO2 conversion into CH4, with an ultralow limiting potential of -0.07 V, while suppressing the hydrogen evolution reaction. Our finding suggests that introduction of a nonmetal active site adjacent to the metal site provides a new avenue for achieving efficient multi-intermediate electrocatalytic reactions.
               
Click one of the above tabs to view related content.