LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells

Photo from wikipedia

The widespread use of nonfullerene-based electron-accepting materials has triggered a rapid increase in the performance of organic photovoltaic devices. However, the number of efficient acceptor compounds available is rather limited,… Click to show full abstract

The widespread use of nonfullerene-based electron-accepting materials has triggered a rapid increase in the performance of organic photovoltaic devices. However, the number of efficient acceptor compounds available is rather limited, which hinders the discovery of new, high-performing donor:acceptor combinations. Here, we present a new, efficient electron-accepting compound based on a hitherto unexplored family of well-known molecules: gold porphyrins. The electronic properties of our electron-accepting gold porphyrin, named VC10, were studied by UV–Vis spectroscopy and by cyclic voltammetry (CV) , revealing two intense optical absorption bands at 500–600 and 700–920 nm and an optical bandgap of 1.39 eV. Blending VC10 with PTB7-Th, a donor polymer, which gives rise to an absorption band at 550–780 nm complementary to that of VC10, enables the fabrication of organic solar cells (OSCs) featuring a power conversion efficiency of 9.24% and an energy loss of 0.52 eV. Hence, this work establishes a new approach in the search for efficient acceptor molecules for solar cells and new guidelines for future photovoltaic material design.

Keywords: organic solar; acceptor; solar cells; porphyrin; electron accepting

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.