LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wearable Piezoelectric Nanogenerators Based on Core-Shell Ga-PZT@GaOx Nanorod-Enabled P(VDF-TrFE) Composites.

Photo by javardh from unsplash

High-output flexible piezoelectric nanogenerators (PENGs) have achieved great progress and are promising applications for harvesting mechanical energy and supplying power to flexible electronics. In this work, unique core-shell structured Ga-PbZrxTi1-xO3… Click to show full abstract

High-output flexible piezoelectric nanogenerators (PENGs) have achieved great progress and are promising applications for harvesting mechanical energy and supplying power to flexible electronics. In this work, unique core-shell structured Ga-PbZrxTi1-xO3 (PZT)@GaOx nanorods were synthesized by a simple mechanical mixing method and then were applied as fillers in a poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) matrix to obtain highly efficient PENGs with excellent energy-harvesting properties. The decoration of gallium nanoparticles on PZT @GaOx nanorods can amplify the local electric field, facilitate the increment of polar β-phase fraction in P(VDF-TrFE), and strengthen the polarizability of PZT and P(VDF-TrFE). The interfacial interactions of GaOx and P(VDF-TrFE) are also in favor of an increased β-phase fraction, which results in a remarkable improvement of PENG performance. The optimized Ga-PZT@GaOx/P(VDF-TrFE) PENG delivers a maximum open-circuit voltage of 98.6 V and a short-circuit current of 0.3 μA with 9.8 μW instantaneous power under a vertical force of 12 N at a frequency of 30 Hz. Such a PENG exhibits a stable output voltage after 6 000 cycles by the durability test. Moreover, the liquid gallium metal offers a mechanical matching interface between rigid PZT and the soft polymer matrix, which benefits the effective, durable mechanical energy-harvesting capability from the physical activities of elbow joint bending and walking. This research renders a deep association between a liquid metal and piezoelectric ceramics in the field of piezoelectric energy conversion, offering a promising approach toward self-powered smart wearable devices.

Keywords: vdf trfe; core shell; piezoelectric nanogenerators; trfe; pzt gaox

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.