LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Targeted Polymeric Nanoparticles Based on Mangiferin for Enhanced Protection of Pancreatic β-Cells and Type 1 Diabetes Mellitus Efficacy.

Photo from wikipedia

Mangiferin (MGF) is found in many natural plants, such as Rhizoma Anemarrhenae, and has anti-diabetes effects. However, its clinical applications and development are limited by poor solubility and low-concentration enrichment… Click to show full abstract

Mangiferin (MGF) is found in many natural plants, such as Rhizoma Anemarrhenae, and has anti-diabetes effects. However, its clinical applications and development are limited by poor solubility and low-concentration enrichment in pancreatic islets. In this paper, targeted polymeric nanoparticles were constructed for MGF delivery with the desired drug loading content (6.86 ± 0.60%), excellent blood circulation, and missile-like delivery to the pancreas. Briefly, Glucagon-like peptide 1 (GLP-1) as an active targeting agent to the pancreas was immobilized on the block copolymer polyethyleneglycol-polycaprolactone (PEG-PCL) to obtain final GLP-1-PEG-PCL amphiphiles. Spherical MGF-loaded polymeric nanoparticles were acquired from the self-assembly of the targeted GDPP nanoparticles and MGF with a homogeneous size of 158.9 ± 1.7 nm and a negative potential for a good steady state in circulation. In this drug vehicle, GLP-1 acts as the missile vanguard via the GLP-1 receptor on the surface of the pancreas for improving the accumulation and efficiency of MGF in the pancreas, the hypoglycemic effect of MGF, and the restorative effect on pancreatic islets, which were investigated. As compared to free MGF, MGF/GDPP nanoparticles appeared to be more concentrated in the pancreas, with better blood glucose and glucose tolerance, enhanced insulin levels, increased β-cell proliferation, reduced β-cell apoptosis, and islet repair in vivo. This targeted drug delivery system provided a novel strategy and hope for enhancing MGF delivery and anti-diabetes efficacy.

Keywords: glp; nanoparticles based; polymeric nanoparticles; mgf; targeted polymeric; delivery

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.