Optical modulation on ultrashort time scales is both of central importance and an essential operation for applications in photonics and optoelectronics. Here, with a giant bandgap renormalization due to a… Click to show full abstract
Optical modulation on ultrashort time scales is both of central importance and an essential operation for applications in photonics and optoelectronics. Here, with a giant bandgap renormalization due to a high density of carrier injected by a femtosecond pulse, we realize an expected broadband saturable absorption in chemical vapor deposition grown monolayer transition-metal dichalcogenide MoSe2. Our findings reveal the band edge shift from ∼1.53 to ∼0.52 eV under the pump excitation of 0.80 eV, which is induced by the nonequilibrium occupation of electron-hole states after a Mott transition as well as the increase of carrier temperature.
               
Click one of the above tabs to view related content.