LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexible, Elastic, and Superhydrophobic/Superoleophilic Adhesive for Reusable and Durable Water/Oil Separation Coating.

Photo from wikipedia

This study investigates a highly flexible/stretchable and mechanically durable superhydrophobic/superoleophilic coating for efficient oil/water separation and oil absorption. The coating is applied via a simple immersion process using a mixed… Click to show full abstract

This study investigates a highly flexible/stretchable and mechanically durable superhydrophobic/superoleophilic coating for efficient oil/water separation and oil absorption. The coating is applied via a simple immersion process using a mixed solution of a biocompatible adhesive (ethyl cyanoacrylate, ECA), a highly stretchable polymer (polycaprolactone, PCL), and superhydrophobic/superoleophilic nanoparticles (fluorine-coated silica nanoparticles, F-SiO2 NPs) in a solvent, followed by solvent evaporation and ECA polymerization. Polymerized ECA (poly-ECA) in the coating material strongly adheres the F-SiO2 NPs to the substrate surface, while PCL bestows the rigid poly-ECA with high flexibility. A coated polyurethane sponge exhibits superhydrophobicity (water contact angle of >150°), while retaining robust mechanical stability and flexibility/elasticity. This provides an efficient means of cleaning oil spills with high selectivity, even after mechanical abrasion (>99% separation efficiency is retained after 120 tape test cycles and 50 rubbing test cycles), with excellent reusability.

Keywords: oil; separation; water; flexible elastic; elastic superhydrophobic; superhydrophobic superoleophilic

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.