LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous Imaging of Dual microRNAs in Cancer Cells through Catalytic Hairpin Assembly on a DNA Tetrahedron.

Photo from wikipedia

Accurate detection and imaging of tumor-related microRNA (miRNA) in living cells hold great promise for early cancer diagnosis and prognosis. One of the challenges is to develop methods that enable… Click to show full abstract

Accurate detection and imaging of tumor-related microRNA (miRNA) in living cells hold great promise for early cancer diagnosis and prognosis. One of the challenges is to develop methods that enable the identification of multiple miRNAs simultaneously to further improve the detection accuracy. Herein, a simultaneous detection and imaging method of two miRNAs was established by using a programmable designed DNA tetrahedron nanostructure (DTN) probe that includes a nucleolin aptamer (AS1411), two miRNA capture strands, and two pairs of metastable catalytic hairpins at different vertexes. The DTN probe exhibited enhanced tumor cell recognition ability, excellent stability and biocompatibility, and fast miRNA recognition and reaction kinetics. It was found that the DTN probe could specifically enter tumor cells, in which the capture strand could hybridize with miRNAs and initiate the catalytic hairpin assembly (CHA) only when the overexpressed miR-21 and miR-155 existed simultaneously, resulting in a distinct fluorescence resonance energy transfer signal and demonstrating the feasibility of this method for tumor diagnosis.

Keywords: tumor; cancer; catalytic hairpin; hairpin assembly; dna tetrahedron

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.