LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic Nanomotors in Emulsions for Locomotion of Microdroplets.

Photo by des0519 from unsplash

The locomotion of droplets in emulsions is of practical significance for fields related to medicine and chemical engineering, which can be done with a magnetic field to move droplets containing… Click to show full abstract

The locomotion of droplets in emulsions is of practical significance for fields related to medicine and chemical engineering, which can be done with a magnetic field to move droplets containing magnetic materials. Here, we demonstrate a new method of droplet locomotion in the oil-in-water emulsion with the help of a nonuniform magnetic field in the case where magnetic nanoparticles (MNPs) are dispersed in the continuous phase of the emulsion. The paper analyses the motion of the droplets in a liquid film and in a capillary for various diameters of droplets, their number density, and viscosity of the continuous phase of the emulsion. It is established that the mechanism of droplet locomotion in the emulsion largely depends on the wettability of MNPs. Hydrophobic nanoparticles are adsorbed on the droplet surfaces, forming the agglomerates of MNPs with the droplets. Such agglomerates move at much higher velocities than passive droplets. Hydrophilic nanoparticles are not adsorbed at the surfaces of the droplets but form mobile magnetic clusters dispersed in the continuous phase of the emulsion. Mobile magnetic clusters set the surrounding liquid and droplets in motion. The results obtained in this paper can be used in drug delivery.

Keywords: magnetic nanomotors; emulsions locomotion; phase emulsion; continuous phase; nanomotors emulsions; emulsion

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.