LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porphyrin Coordination Polymer with Dual Photocatalytic Sites for Efficient Carbon Dioxide Reduction.

Photo from wikipedia

The resurgence of visible light photocatalysis for carbon dioxide reduction reaction (CO2RR) has resulted in the generation of various homogeneous and heterogeneous paradigms. Herein, a new system has been established… Click to show full abstract

The resurgence of visible light photocatalysis for carbon dioxide reduction reaction (CO2RR) has resulted in the generation of various homogeneous and heterogeneous paradigms. Herein, a new system has been established by incorporating dual catalytic sites into porous coordination polymer toward the photocatalysis of CO2RR. A functional ligand, 5,10,15,20-tetrakis[4'-(terpyridinyl)phenyl]porphyrin (TTPP), has been used to assemble discrete divalent nickel ions into the coordination polymer (TTPP-Ni) through metal bis(terpyridine) nodes. Both the porphyrin and terpyridine moieties prefer to bind with nickel ions, giving rise to TTPP-Ni with dual active catalytic sites. By controlling different molar ratios of ligand and metal and the reaction temperature, four samples including TTPP-Ni-n (n = 1, 2, 3, and 4) with different molar ratios of nickel porphyrin and nickel bis(terpyridine) subunits have been fabricated. The predesigned two-dimensional chemical structures of TTPP-Ni samples have been fully characterized using powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and IR and UV-vis spectroscopies. The photocatalytic activities of these coordination polymers have been screened using [Ru(bpy)3]Cl2·6H2O as a photosensitizer together with triisopropanolamine as the sacrificial electron donor in CH3CN and H2O. Among these photocatalysts, TTPP-Ni-3 and TTPP-Ni-4 with almost saturated metal sites are able to display extraordinary photocatalytic performance including a CO generation rate of ca. 3900 μmol g-1 h-1 and 98% selectivity. The mechanism associated with dual active sites has been rationalized on the basis of theoretical simulations.

Keywords: dioxide reduction; carbon dioxide; microscopy; coordination polymer

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.