LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable Circularly Polarized Luminescence with a High Dissymmetry Factor Emitted from Luminogen-Bonded and Electrically Controlled Polymer-Stabilized Cholesteric Liquid Crystals.

Photo by martindorsch from unsplash

Circularly polarized luminescence (CPL)-active materials with high dissymmetry factor (glum) values show great potential in photonic devices. In this study, electric-field-driven systems with tunable CPL signals are successfully fabricated based… Click to show full abstract

Circularly polarized luminescence (CPL)-active materials with high dissymmetry factor (glum) values show great potential in photonic devices. In this study, electric-field-driven systems with tunable CPL signals are successfully fabricated based on polymer-stabilized cholesteric liquid crystal (PSChLC) doping by fluorescent molecules. By constructing a gradient helical superstructure of PSChLCs, distinctive CPL emission from two sides of a single sample is realized, in which the |glum| values were measured to be 0.6 and 1.5, respectively. Herein, we discussed the possible mechanism of this phenomenon. In addition, an applied electric field could broaden the reflection bandwidth of PSChLCs from 150 to 500 nm, covering the whole visible light region. Furthermore, this electric field-induced behavior leads to the variation of CPL signals and corresponding glum values, indicating the potential of the novel materials in the design and preparation of CPL-emitting devices with electrically tunable CPL intensity and glum.

Keywords: high dissymmetry; dissymmetry factor; stabilized cholesteric; polymer stabilized; polarized luminescence; circularly polarized

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.